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The displaced harmonic oscillator (DHO) formalism and the Energy Gap Hamiltonian have been
used extensively in describing charge transport reaction, such as electron and proton transfer.
Here we describe the rates of electron transfer between weakly coupled donor and acceptor states
when the potential energy depends on a nuclear coordinate, 1.e., non-adiabatic electron transfer.
These results reflect the findings of Marcus’ theory of electron transfer.
We can represent the problem as calculating the transfer or reaction rate for the transfer
of an electron from a donor to an acceptor
D+A-> D+ A (12.22)

This reaction Is mediated by a nuclear coordinate g. This need
not be, and generally Isn't, a simple local coordinate. For Y +" - »
e =

electron transfer In solution, we most commonly consider . D il A :
electron transfer to progress along a solvent rearrangement b * & * h
coordinate in which solvent reorganizes its configuration so that *

dipoles or charges help to stabilize the extra negative charge at i

the acceptor site. This type of collective coordinate Is illustrated ‘R A > : ¢ ;

In the figure to the right. The external response of the medium [~ & = ; g T

along the electron transfer coordinate is referred to as “outer "- L ‘__‘-’ i
shell” electron transfer, whereas the influence of internal
vibrational modes that promote ET is called "inner shell”.
The influence of collective solvent rearrangements or gt
intramolecular vibrations can be captured with the use of an
electronic transition coupled to a harmonic bath.

Normally we assoclate the rates of electron transfer

with the free-energy along the electron transfer coordinate

#*

q
diabatic states that define the potential with the electron on the donor or on the acceptor in the

g The electronic coupling that leads to transfer mixes the

region of their crossing. From this adiabatic surface, we would obtain the rate of transfer from

k=exp(~AG'/kT). If the coupling is weak, and the splitting is small at the crossing point, we



can work In the diabatic basis and use perturbation theory to calculate the rate of transfer
between surfaces. This accounts for non-adiabatic effects and tunneling through the barrier.

Here we will start by writing the transfer rates in terms of the potential energy as before,
We recognize that when we calculate thermally averaged transfer rates that this is equivalent to
describing the diabatic surfaces through a potential of mean force. The Hamiltonlan is

H=H,+V (12.23)
H,=|D)H,(D[+|A) H (A| (12.24)

Here | D) and | A) refer to the potential where E4
the electron Is either on the donor or acceplor,
respectively. These are represented through the

same harmonic potential, displaced from one -

another vertically in energy and horlzontally

ﬂ —
along the reaction coordinate g:

H,= E,,+|Ir.*1.|',;,[1.q_::nz +(g- g',,}a]

H,=E, + hm‘,( I +{g—g‘4]z]

Here we are using reduced varlables for the momenta, coordinates, and displacements of the

(12.25)

harmonic oscillator. These are Born-Oppenhelmer surfaces which we can express as product

states In the electronic and nuclear configurations: |D)=|d,n}. The coupling between the

surfaces Is assigned a coupling matrix element ./
V= [|d)(al+|a)(d[] (12.26)

We have made the Condon approximation, implying that the transfer matrix element that
describes the electronic interaction has no dependence on nuclear coordinate. Typically this
electronic coupling 1s expected to drop off exponentlally with the separation between donor and

acceptor orbitals.
J = Jyexp(-B(R-R,)). (12.27)



Marcus evaluated the perturbation theory expression for the transfer rate by caleulating
Franck-Condon factors for the overlap of donor and acceptor surfaces, In a manner similar (o our
treatment of the DHO electronic absorption spectrum. Similarly, we can proceed to calculate the

rates of electron transfer using the Golden Rule expression for the transfer of amplitude between

Iwo states
2 5. ZE | =
W = ;Zp, v,,‘a(.e*-.ﬁ,]-h.‘]‘m dt(V,(1)V;(0)) (12.28)
Using V, ()= """ v & """ we write the electron transfer rate In the DHO elgenstate form as
|J|: i) i =i WA Fr”,...l.'# A 12.29
Wer = 3 [“dte Caald aasd (12.29)
or in the form of the Energy Gap Hamiltonlan
i
Wy .%-r: dt ¢ 5 RWh 1l p) (12.30)
: ! | 1
where F(t)={exp, -L{:‘.fer{f]{J . (12.31)
Il
H:M'H.q'Hur (12.32)
and H, ()=e"""y &Mt (12.33)

These expressions and application of the cumulant expansion to eq. (12.31) allows us Lo express
the transfer rate in terms of the lineshape function and correlation function

—f 1
F(r}-nxp[?if- H[’Hj (12.34)
8(1)=| dr, [ dr, Cp(,-1,) (12.35)
iy
Cm[r]-h—a{aum(r}ﬁum(u]} (12.36)
Am(Hp) (12.37)

The lineshape function can also be written as a sum of many coupled nuclear coordinates,

q, - This expression Is commonly applied to the vibronic (Inner shell) contributions to the

transfer rate;



8(1)=2(d - ) [(7, +1)(e = ~1) 7, (e -1)]

. (12.38)
=2.(a'-d?) [coth(pha, 1 2)(1-cosm, )+ I(sine,t-a,t)]

Substituting the expression for a single harmonic mode into the Golden Rule rate expression eq.
(12.28) gives

vir = [ e T Y gl D((n1)(e +1)en(ev1))] 239

where D=(d,-dy)" (12.40)

This expression s very similar to the one that we evaluated for the absorption lineshape of the
Displaced Harmonic Oscillator model. A detailed evaluation of this vibronically mediated
transfer rate is given in Jortner.?

To get a feeling for the dependence of k¥ on g we can look at the classical Hmit
he» << kT. This corresponds to the case where one Is describing the case of a low frequency
“solvent mode” or "outer sphere” effect on the electron transfer. Now, we neglect the imaginary
part of g(f) and take coth{fhe/2)— 2/fhe

z L
Wy = i—?j’: dte oY exp(—(2DKT 1 hey, )(1- cosar,t)) (12.41)

Note that the high temperature limit also means the low frequency limit for @y, . This means that

we can expand cosa,t = 1-(a,() /2, and find
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where A= Dha,. Note that the activation barrier AE for displaced harmonic oscillators is
AE' = E,—E,+A=AE"+A. For a thermally averaged rate it Is proper to associate the average

energy gap with the standard free energy of reaction, (H,- H,)-A=AG"." Therefore, this

expression is equivalent to Marcus’ result for the electron transfer rate



kyr = Aexp (12.43)

—(ac"+4)"]
AAKT ‘ J

where the pre-exponential is
A= 2z |J' [nJaAkT . (12.44)

This expresslon shows the nonlinear behavior expected for the dependence of the electron
transfer rate on the reaction free energy. This Is unusual because we generally think in terms of a
linear free energy relationship between the rate of a reaction and the equilibrium constant:
InkecIn K. This leads to the thinking that the rate should Increase as we Increase the driving

free energy for the reaction —-AG'. This w = 100 cm*!

behavior only hold for a small region in AG”". ::: R R D
Instead, eq. (12.43) shows that the ET rate will ik — 0.5
increase with —AG”, until a maximum rate is & 1 b - iﬁ
observed for -AG"=A4 and the rate then E o |

decreases. This decrease of k with Increased ‘:':;

~AG" is known as the “Inverted regime”. The o |

inverted behavior means that extra vibrational T o R
excitation Is needed to reach the curve crossing =AG/eV

invquﬂd

as the acceptor well Is lowered. The high

temperature behavior for coupling to a low
frequency mode (100 em' at 300 K) Is shown M
at right, in addition to a cartoon that indicates

the shift of the curve crossing at ACIs
increased.

Particularly in intramolecular ET, it 1s common that one wants to also account for the
influence of a high frequency intramolecular vibration that is not in the classical limit. If an

additional mode of frequency @, and a rate in the form eq. (12.39) Is added to the low frequency

mode, Jortner has given an expression for the rate as:



IJ’I

] 2-I
W Z[ ] {AG"+ia+ i) ‘ . (12.45)

44, kT

Here A, is the reorganization energy under the low frequency mode, and @, is the frequency of

the high frequency mode. For this case, the same inverted regime exists; although the simple
Gausslan dependence of k on AG" no longer exists. The asymmetry here exists because tunneling
sees a narrower barrier in the inverted regime than in the normal regime. Examples of the rates

obtained with eq. (12.45) are plotted in the figure below (T'= 300K).
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As with electronic spectroscopy, a more general and effective way of accounting for the nuclear
motions that mediate the electron transfer process is to describe the coupling weighted density of
states as a spectral density. Then we can use coupling to a harmonic bath to describe solvent

and/or vibrational contributions of arbitrary form to the transfer event using

g(t)= j:l de p(m}[mth[% }1 —cos@t)+ (sinat - mt]ﬂ : (12.46)



